

# Support for Government Performance and Results Act (GPRA) Analysis

2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 16th, 2013

**Project ID # VSS099** 

**Jacob Ward** 

U.S. Department of Energy, Vehicle Technologies Office (VTO)

This presentation does not contain any proprietary, confidential, or otherwise restricted information



| Timeline                                                                                                                                                        | Barriers*                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Start Date: October 2012 End Date: September 2013 Percent Complete: 40%                                                                                         | <ul> <li>Risk aversion*</li> <li>Constant advances in technology*</li> <li>Cost*</li> <li>Computational models, design, and simulation methodologies*</li> <li>Complex benefits analysis</li> </ul> |  |  |
|                                                                                                                                                                 | *from 2011-2015 VTP MYPP                                                                                                                                                                            |  |  |
| Budget                                                                                                                                                          | Partners                                                                                                                                                                                            |  |  |
| <ul> <li>Total Project Funding (DOE)</li> <li>\$200,000 (Dave Anderson)</li> <li>\$150,000 (Jacob Ward, see VAN007)</li> <li>\$100,000 (Fred Joseck)</li> </ul> | <ul> <li>Formal Collaborator</li> <li>ANL, ORNL, TA Engineering</li> <li>Interactions</li> <li>All U.S. DRIVE Partners, outside companies (OEMs, suppliers)</li> </ul>                              |  |  |

### **Objectives & Relevance**



- Objective: calculate VTO benefits
  - Petroleum savings
  - GHG emissions reduction
  - Levelized cost of driving (light duty vehicles)
- Relevance:
  - Satisfy requirements of the Government Performance and Results Act
  - Link projected reductions in petroleum use and GHG emissions to VTP technical areas
  - Inform VTP managers about impacts of achieving technology targets

### **VTO Subprograms**

- Advanced Combustion
- Electrification
- Advanced Materials
- Fuels and Lubricants



#### **Macroeconomic indicators**

- petroleum consumption
- GHG emissions
- Fleet economy

### **Objectives & Relevance** (continued)



- Outputs inform regular VTO analytical product updates:
  - EERE annual scenario portfolio analysis
  - Levelized Cost of Driving Program Record
  - Well-to-Wheels Record
- The GPRA analysis process was used for evaluation of the VTO SuperTruck Project
- Results from GPRA analysis have been used in developing technology targets for VTP initiatives:
  - U.S. DRIVE Partnership
  - EV Everywhere Grand Challenge







## Approach: VTO Scenario Comparison



- Compare two scenarios to isolate the VTO technology portfolio:
  - Baseline "No-Program" scenario, which excludes all VTO-supported technology
  - Target scenario, in which vehicles meet VTP performance and cost

targets:

**Advanced Combustion** 

Electrification

**Advanced Materials** 

**Fuels and Lubricants** 

(performance, cost)

### Scenarios are a combination of times, powertrains, and uncertainties:

#### Time periods:

- 2015
- 2020
- 2030
- 2045

#### **Powertrains:**

- Internal Combustion
- Hybrid
- Plug-in hybrid
- Battery electric
- Fuel cell

#### **Uncertainties:**

- 10% (optimistic)
- 50% (mid-range)
- 90% (pessimistic)

## **Approach: VTO Scenario Comparison**





Autonomie: Vehicle simulation tool (ANL), see #VAN008; HTEB: Heavy Truck Energy Balance model (TA Engineering), : MA<sup>3</sup>T: Market Acceptance of Advanced Automotive Technologies (ORNL), VISION: Stock/energy/Emissions accounting model (ANL), see #VAN006, GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model, see #VAN002

### Technical Accomplishments: Projected Fuel Economies



- LDV fuel economy is projected to increase much faster in the Target case
  - → VTO technologies offer 50-85% improvements in fuel economy







## Technical Accomplishments: Market Projections





- Much more rapid market penetration by HEVs and PHEVs in the "Target" case.
- Little penetration of all-electric of fuel cell vehicles in these cases (little pubic charging or hydrogen infrastructure assumed)



- Rapid penetration by best-in-class (BIC), since incremental cost is low
- Adv Conv. and HEVs grow more gradually in market share

(Not shown: Analogous results for Class 7&8 Single Unit trucks and Class 4-6 trucks)

## **Technical Accomplishments: Projected Benefits**





|          | 2050 Petroleum Use,<br>Million barrels per day |        |  |  |
|----------|------------------------------------------------|--------|--|--|
|          | No-Program                                     | Target |  |  |
| LDVs     | 5.4                                            | 2.9    |  |  |
| M + HDVs | 4.3                                            | 2.9    |  |  |



|          | Annual GHG Emissions,<br>Million MT CO₂eq/yr |     |  |  |
|----------|----------------------------------------------|-----|--|--|
|          | No-Program Target                            |     |  |  |
| LDVs     | 1090                                         | 660 |  |  |
| M + HDVs | 730                                          | 490 |  |  |

### **Technical Accomplishments: Attribution of Benefits**





- Benefits from hybridization are significant for LD HEVs and PHEVs
- Benefits from increased engine and drivetrain efficiency are large for heavy and medium duty trucks

(No benefit attributed to reduction in aerodynamic or rolling resistance of LDVs , since VTP has no projects for these for LDVs.)

### Technical Accomplishments: Levelized Cost



Levelized Cost of Driving =
Purchase price of vehicle
plus present value of fuel
per lifetime vehicle-milestraveled

#### Assuming:

- Fuel prices from AEO2012
   High Oil Price Case
- 14,500 mi/year
- Ownership 5 year
- 7% discount rate
- Vehicle purchase and fuel costs only (no resale, insurance, maintenance costs)
- Cost per mile broken out by component shows tradeoff between cost of fuel and cost of advancedtechnology components
- Error bars show range between Target Case and No Program Case
- HEV ad PHEVs are are cost-competitive with Advanced SI vehicle in the Target Case

### **Collaborations & Coordination**



#### Thanks to...

- T. Stephens, ANL, who leads LDV analysis and overall documentation (partner)
- A. Birky, TA Engineering, Inc., who perform simulations and analysis of medium and heavy trucks (partner)
- A. Rousseau, ANL, who performs light duty vehicle simulations (collaborator)
- Z. Lin (ORNL) on vehicle choice modeling (coordinating)
- EIA to maintain desired consistency with Annual Energy Outlook (coordinating)
- Cummins, Peterbilt, Detroit Diesel, Daimler, Navistar and Volvo to analyze new technologies for heavy trucks (coordinating)

### **Future Work**



#### Remainder of FY13

- Establish baseline case using AEO 2013
- Model/simulate vehicle performance and costs
- Project market shares and stock
- Calculate fuel use and emissions for U.S. fleet
- Update modeling and simulation assumptions
  - Testing procedures and sizing algorithms
- Include energy balance for each vehicle on each cycle
- Create an outputs database that can be used for other studies (i.e. cost sensitivities)

### Proposed future improvements

- Improve fidelity of models (under separate funding)
- Include other costs (maintenance, resale value, etc.) in levelized cost

### **Summary**



Successful achievement of EERE-VTP technology goals is estimated to result in the following benefits:

|                                                           |      | 2030 | 2050 |
|-----------------------------------------------------------|------|------|------|
| On-road fuel economy improvement (%)                      | LDVs | 50%  | 85%  |
|                                                           | HTs  | 40%  | 50%  |
| Annual oil savings (million bpd)                          |      | 2.8  | 3.8  |
| Annual primary energy savings (quad/yr)                   |      | 6.7  | 9.7  |
| GHG emission reduction (million mt CO <sub>2</sub> eq/yr) |      | 400  | 580  |

Scenarios analyzed provide a cause-effect link between specific program targets and future benefits

- Benefits from hybridization are significant for LD HEVs and PHEVs
- Benefits from increased engine and drivetrain efficiency are large for heavy and medium duty trucks



eere.energy.gov

Jacob Ward Analysis Manager, Vehicle Technologies Office

202-586-7606 jacob.ward@ee.doe.gov

sis